Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
medrxiv; 2024.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2024.02.02.24302068

ABSTRACT

Asthma is a complex disease caused by genetic and environmental factors. Epidemiological studies have shown that in children, wheezing during rhinovirus infection (a cause of the common cold) is associated with asthma development during childhood. This has led scientists to hypothesize there could be a causal relationship between rhinovirus infection and asthma or that RV-induced wheezing identifies individuals at increased risk for asthma development. However, not all children who wheeze when they have a cold develop asthma. Genome-wide association studies (GWAS) have identified hundreds of genetic variants contributing to asthma susceptibility, with the vast majority of likely causal variants being non-coding. Integrative analyses with transcriptomic and epigenomic datasets have indicated that T cells drive asthma risk, which has been supported by mouse studies. However, the datasets ascertained in these integrative analyses lack airway epithelial cells. Furthermore, large-scale transcriptomic T cell studies have not identified the regulatory effects of most non-coding risk variants in asthma GWAS, indicating there could be additional cell types harboring these 'missing regulatory effects'. Given that airway epithelial cells are the first line of defense against rhinovirus, we hypothesized they could be mediators of genetic susceptibility to asthma. Here we integrate GWAS data with transcriptomic datasets of airway epithelial cells subject to stimuli that could induce activation states relevant to asthma. We demonstrate that epithelial cultures infected with rhinovirus significantly upregulate childhood-onset asthma-associated genes. We show that this upregulation occurs specifically in non-ciliated epithelial cells. This enrichment for genes in asthma risk loci, or 'asthma heritability enrichment' is also significant for epithelial genes upregulated with influenza infection, but not with SARS-CoV-2 infection or cytokine activation. Additionally, cells from patients with asthma showed a stronger heritability enrichment compared to cells from healthy individuals. Overall, our results suggest that rhinovirus infection is an environmental factor that interacts with genetic risk factors through non-ciliated airway epithelial cells to drive childhood-onset asthma.


Subject(s)
Genomic Instability , Infections , Asthma , COVID-19 , Influenza, Human
SELECTION OF CITATIONS
SEARCH DETAIL